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A B S T R A C T

Positron emission tomography (PET) images have been incorporated into the radiotherapy process as a powerful
tool to assist in the contouring of lesions, leading to the emergence of a broad spectrum of automatic seg-
mentation schemes for PET images (PET-AS). However, not all proposed PET-AS algorithms take into con-
sideration the previous steps of image preparation. PET image noise has been shown to be one of the most
relevant affecting factors in segmentation tasks. This study demonstrates a nonlinear filtering method based on
spatially adaptive wavelet shrinkage using three-dimensional context modelling that considers the correlation of
each voxel with its neighbours. Using this noise reduction method, excellent edge conservation properties are
obtained. To evaluate the influence in the segmentation schemes of this filter, it was compared with a set of
Gaussian filters (the most conventional) and with two previously optimised edge-preserving filters. Five seg-
mentation schemes were used (most commonly implemented in commercial software): fixed thresholding,
adaptive thresholding, watershed, adaptive region growing and affinity propagation clustering. Segmentation
results were evaluated using the Dice similarity coefficient and classification error. A simple metric was also
included to improve the characterisation of the filters used for induced blurring evaluation, based on the
measurement of the average edge width. The proposed noise reduction procedure improves the results of seg-
mentation throughout the performed settings and was shown to be more stable in low-contrast and high-noise
conditions. Thus, the capacity of the segmentation method is reinforced by the denoising plan used.

1. Introduction

Radiotherapeutic process is highly dependent on digital image in
many stages of its process. From the prescription to the follow-up of the
treatment [1].

Thus, new procedures appear to help in the interpretation and
analysis. In general, image segmentation performs an important func-
tion in medical image processing and analysis [2]. In radiotherapy,
these tasks have an essential role.

The positron emission tomography (PET) image has become a
powerful tool, providing functional information on radiotracer locali-
sation and extension in pathological regions [3], making it fundamental
in the radiotherapeutic process, which needs to precisely contour re-
gions of pathological uptakes for helping to define target volumes. The
PET image is characterised by a low signal-to-noise ratio (SNR) and
blurred edges in comparison with other modalities (CT or MRI). Small

volumes are affected by the partial volume effect (PVE) [4], a limiting
characteristic of PET images; thus, image preparation is necessary prior
to segmentation. In many cases, this stage includes the application of
noise reduction procedures.

Noise is one of the most relevant affecting factors in segmentation
[5], and the noise reduction method is one of the keys to its application.
The effectiveness of maintaining the uptake magnitude is one of the
challenges facing denoising algorithms for PET images. The algorithm
used must also preserve the edges to prevent contour modification of
the objects and as well as prevent changes in the volumes of interest.

However, the recent Report of American Association of Physicists in
Medicine (AAPM) Task Group No. 211 [6] shows that few authors
provide information on presegmentation processing. The study by Geets
et al. [7] is one of the few that explicitly includes this stage of pre-
processing in the segmentation framework. In this study, the denoising
process is performed within the segmentation framework, as a previous
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step, by applying a bilateral filter (bf) and using a deblurring process to
compensate for the effect of the system’s point spread function (psf).
Other authors [8,9] have used anisotropic diffusion filtering (adf)
during the preparation stage of the image. The use of adf prevents
blurring of the object’s edges and preserves the average activity within
a region. A combined approach of noise reduction and the process of
segmentation by means of wavelets is shown in a study by Hanzouli
et al. [10], using the anatomical information of the CT. The sensitivity
of the segmentation process with the choice of the postreconstruction
filter has been demonstrated by McGurk et al. [11], showing that the
choice of the filter can produce wide variations in segmentation accu-
racy depending on the method used. Taking into account the previous
Report of the AAPM [6], relatively few authors focus on the filtering
process as a necessary step prior to segmentation; those who do, how-
ever, agree to use filtering procedures with favourable edge preserva-
tion properties.

We have proposed a wavelet-based noise reduction technique [12]
with the ability to maintain uptake values while preserving the edges in
“significant” regions (determining the local variance through the cor-
relation of pixels and adapting the denoising process to the context). In
this study, the extension to 3D was estimated by averaging the various
directions of each voxel. We are proposing in the following paper an
improvement when obtaining the relation of each voxel with its context
directly in 3D (full 3D). This algorithm has two important features that
make it especially interesting in segmentation tasks.

The first feature is significant noise reduction in the background
regions, which had been outlined in the previous study, with an in-
crease in contrast between various tissues (liver, lung, mediastinum)
being considered as reference [13]. The second essential feature is edge
preservation, which is crucial in segmentation tasks. This property is
improved when the relationship of each voxel with its 3D surroundings
is evaluated.

In this study, the capabilities of the improved noise reduction al-
gorithm under various automatic PET segmentation schemes (PET-AS)
are shown. In order to accomplish this demonstration, the denoising
method we proposed has been compared with other methods of noise
reduction frequently used in this process, showing how the efficacy of
the segmentation method is reinforced by the used denoising plan.

2. Materials and methods

2.1. Datasets and ground truth

Various image datasets were used to show the effect of filtering
using various methods of segmentation in a wide variety of images with
various resolutions and various signal-to-background (S/B) ratios and
noise levels. International Electrotechnical Commission (IEC) phantom
images with hot inserts were used, considering various S/B ratios. The
evaluation mask (the “Ground Truth”) was determined by manual
segmentation in CT images using a spherical 3D region of interest (ROI)
which was later downsampled. This phantom was not without some
limitations [6]; among others, the wall effect on the inserts [14] and its
regular shape. Taking into account both considerations, a synthetic
phantom with highly irregular lesions and a high number of radioactive
environments was used. The evaluation mask in this case was the
contour used for the generation of the lesion. In order to introduce an
approximation to the clinical situation, simulated lesions were gener-
ated in six patients and were postprocessed with each filter. To assess
the influence of filtering on manual contouring, lesions of known size
dimensions were contoured by an expert radiotherapy oncologist. The
details of each data set are reported below.

2.1.1. IEC phantom series: spherical objects
A NEMA IEC Body methacrylate Phantom 2001 was used, simu-

lating a human thorax. It has an internal length of 194mm and contains
six spheres with internal diameters of 10, 13, 17, 22, 28 and 37mm and

a wall thickness of 1mm. It includes a cylindrical cold central insert
180mm in length and 51mm in diameter. To simulate lesions of var-
ious sizes in distinct radioactive environments, the thorax volume was
filled with variable activity concentrations of 18F, from 7.1 kBqml−1 to
23.3 kBqml−1; and the spheres were subsequently filled with an ap-
proximate concentration of 115 kBqml−1. Three scenarios were con-
sidered with approximate (S/B) ratios of 20:1 (high contrast), 10:1
(medium contrast) and 5:1 (low contrast).

The acquisitions were performed using a GE Discovery LS PET/CT
scanner (General Electric Medical Systems, Milwaukee, USA). This
hybrid scanner combines CT multislice LightSpeed with an 18-ring
(14.5 cm) PET Advance NXi with bismuth germanate detector blocks.
The PET data were acquired in two-dimensional mode, with a field of
view of 50 cm and 4min scan time. The PET images were reconstructed
with CT-based attenuation correction without PSF correction, using the
iterative ordered subset expectation maximisation (OSEM) method,
with two iterations and 28 subsets. The PET images were reconstructed
in a 128× 128 matrix (35 slices) with a voxel size of
3.906mm×3.906mm×4.250mm.

With this pixel size, some algorithms were unable to segment the
smaller spheres. This becomes noticeable in low-contrast scenarios.
Therefore, an extra reconstruction was performed in a 256× 256 ma-
trix with a voxel size of 1.953mm×1.953mm×4.250mm for the
low-contrast case. This acquisition was named ∼5:1 HR (low contrast
and high resolution).

2.1.2. Simulated phantom series: irregular objects
Synthetic images were built using the PETSTEP simulator [15].

PETSTEP is a series of open-source routines developed in the Matlab
environment (MathWorks, Natick, MA). PETSTEP operates in the fra-
mework of the computational environment for radiotherapy research
(CERR) [16]. A GE Discovery 690 PET/CT scanner was modelled, using
images of a 20-cm diameter cylindrical phantom, where irregular target
tumours were manually contoured. Values used in the simulated
scanner were as follows: random fraction, 0.07; scatter fraction, 0.37;
sensitivity, 7.4; and true counts/kBq/s and PSF, 4.9mm. The images
were projected for obtaining sinograms in which the desired Poisson
noise level was introduced and reconstructed using OSEM (two itera-
tions and 24 subsets) with CT-based attenuation correction and without
PSF correction. Images were in a 256×256 matrix with a voxel size of
2.058mm×2.058mm×4.250mm. The tumours were simulated with
an S/B ratio∼ 3.5 and a background activity of 13.3 kBq/ml. Seven
lesions with volumes between 2.3 ml and 14.7ml were generated Fig. 2
at the top shows a representative slice of the lesions) in four different
noise environments, with varying acquisition times of 30 s, 60 s, 180 s
and 360 s, corresponding to total counts of 1.58×107, 3.16×107,
9.48×107 and 1.90×108, respectively. The values of the background
level noise of the nonfiltered images are shown in Table 1. The various
filters described below were applied after the OSEM reconstruction.

2.1.3. Simulated clinical series
The PETSTEP simulator [15] was used as in the previous case to

build the synthetic clinical images. In this case, the GE DLS PET/CT
scanner was modelled, and the values were as follows: random fraction,
0.08; scatter fraction, 0.43; sensitivity, 6.4; and true counts/kBq/s and
PSF, 5.1mm. Reconstruction, as with the original images, was per-
formed using a 2D-OSEM with CT-based correction without PSF cor-
rection, obtaining reconstructed images of 128×128 matrix with a
voxel size of 3.906mm×3.906mm×4.250mm. Synthetic realistic
lesions were implanted in images from six patients: three head and neck
and three lung and mediastinum. The lesions were modelled based on
clinical images and were manually contoured in CT images and as-
signed an uptake level. The simulation was then performed using these
contours. As in previous cases, the considered filters were applied after
the reconstruction. Volumes were obtained via manual contouring by
an expert radiation oncologist and were compared with the masks used
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in the generation of the lesions.

2.2. Filters

The comparison was made using the filters most frequently used in
segmentation tasks, according to the AAPM report [4]. Thus, the pro-
posed 3D wavelet-based filter (3Dwf) was compared with a set of
Gaussian kernels, commonly used in daily practice. Bilateral and ani-
sotropic diffusion filtering were also included in the comparison, both
with excellent edge-preserving properties. Other approaches included
in the AAPM report [4], incorporating anatomical information from
other modalities, have proven their usefulness; however, they can
create artefacts when the anatomical-functional correlation is not cor-
rect, and thus will not be considered in this study.

2.2.1. 3D wavelet-based filter: 3Dwf
The proposed algorithm is based on spatially adaptive wavelet

shrinkage with context modelling based on the correlation of neigh-
bouring pixels. It has been described in detail in Huerga et al. [12].

In this study we have implemented some improvements: The most
relevant difference is that the calculation is performed directly in 3D. In
the study by Huerga et al. [12], the 3D estimation was performed by
averaging the various directions in each voxel, but the result is in-
complete. To obtain a determination of local variance for each coeffi-
cient, including the information on the neighbouring voxels in the three
projections, we have based the wavelet transformation on dual-tree
complex wavelet transform (DTCWT) in 3D described by Selesnick
[17]. The DTCWT possesses excellent characteristics of shift invariance,
is directionally selective and is less redundant than the stationary wa-
velet transform (SWT). Transform coefficients of the real and imaginary
part are obtained by the application of real filters in each orientation, so
that the procedures of the general theory of the wavelet transform are
applicable. After the application of the DTCWT, the local variance de-
termination of noise-free coefficients is obtained through the auto-
correlation function in 3D (3D-ACF) and in the wavelet domain.

Fig. 1 compares, in a representative way, the result to be expected
with the modifications taken into account in this study with respect to
the previous study. It represents current 3D direct processing versus the
3D estimation that was previously performed [12] in a head and neck
case. The PET-AS used is an adaptive threshold segmentation (ATS)
solution described below because it was considered (as will be shown)
the best possible solution. When averaging in each direction, some
voxels are erroneously included (red arrow) or excluded (blue arrow).
The application of the DTCWT, with much more directionality and the
context determination including all the neighbours of each voxel (not
only the contents in a given plane), leads to an improvement over the
estimate by averaging. Table 5 includes the global differences that can

be expected respect 3D estimation according to [12] and the im-
provement implemented in this work.

Other minor changes refer to avoid variance stabilization techni-
ques (VST) that were used in [12]. The tests showed that the applica-
tion of a previous VST step does not produce notable differences; thus,
they were eliminated, reducing the computational cost and the com-
plexity of the code. This topic will briefly be addressed in the Discussion
section.

2.2.2. Gaussian filter: g3f, g5f and g7f
The most widely used post reconstruction filter is the Gaussian

filter, of which the Gaussian filter with full width at half maximum
(FWHM) of 5mm is the filter most commonly included in publications.
This filter is simple to implement and has a low computational cost;
however, the SNR gain competes with the edge preservation, depending
on the FWHM used [7]. A 3D Gaussian filtering was applied to each
series with a 3mm, 5mm and 7mm FWHM kernel, named g3f, g5f and
g7f, respectively.

2.2.3. Bilateral filter: bf
A previously optimised bf [18] was applied with a 6mm FWHM

spatial kernel for a 2.058mm×2.058mm pixel size and a FWHM of
7mm for a 3.906mm×3.906mm pixel size. In the radiometric do-
main, the FWHM kernel was adapted to local activity. The bf edge
preservation features have already been observed by other authors
[7,18]. The filter optimization was based on a fit of SNR values and bias
intensity with the proposed wavelet-based filtering (3Dwf). The spatial
kernel determines the number of neighboring voxels contributing sig-
nificantly to the averaging process. The intensity-dependent part
modulates the values included in this averaging. To preserve the edges
of an object, the width of the intensity kernel must be smaller than local
contrast. But not smaller that noisy range, because it could remain
untouched. Thus, parameters selection is critical for the bf. The partial
volume effect, the noise characteristics of the PET image (with in-
tensity-dependent values) complicates this process.

2.2.4. Anisotropic diffusion filter: adf
The adf has been used as a previous step in PET image segmentation

by several authors [8,9]. We applied the adf model proposed by Perona
and Malik [19]. The adf is an iterative filter that generates blurred
images based on an anisotropic diffusion process. The diffusion function
acts as an edge-stopping function. Different solutions can be applied to
fit parametric values of this function. This requires noise estimation. A
value based on a percentile of the accumulated histogram of the ab-
solute values of the gradient is used in [9,19]. Median absolute devia-
tion, more robust to outliers, is also proposed as noise estimator in [20].
In addition, this estimate can be applied inside or outside the iterations.

Table 1
Filter effect. Noise level input (%) (second column) and noise level output (%) in the rest of the columns. Intensity bias in signal in the output image is indicated in
parentheses. Values corresponding to the spherical objects are at the top, and those corresponding to the simulated irregular series are at the bottom.

Spherical objects Noise level output % (intensity bias %)

S/B Noise level input (%) g3f g5f g7f bf adf 3Dwf

∼20:1 23.1 22.7 (−0.1) 17.9 (−2.2) 15.0 (−4.9) 16.2 (−2.4) 9.9 (−0.5) 13.2 (−0.3)
∼10:1 19.7 19.2 (−0.2) 14.1 (−2.7) 10.6 (−5.9) 12.1 (−2.4) 5.7 (−0.5) 8.8 (−0.7)
∼5:1 14.5 14.2 (−0.2) 9.9 (−2.9) 6.8 (−6.0) 8.3 (−2.4) 3.6 (−0.5) 6.0 (−0.8)
∼5:1HR 19.5 13.8 (−1.6) 9.5 (−3.7) 5.9 (−7.3) 7.6 (−3.4) 13.9 (−0.2) 5.7 (−1.8)

Irregular objects Noise level output % (intensity bias %)

Time [s] Noise level input (%) g3f g5f g7f bf adf 3Dwf

30 24.9 11.9 (−14.4) 6.6 (−27.7) 3.8 (−40.2) 10.2 (−8.9) 13.1 (−4.0) 7.8 (−8.2)
60 19.4 9.9 (−10.4) 6.0 (−21.4) 4.0 (−32.0) 8.2 (−5.8) 11.2 (−1.8) 7.9 (−3.1)
180 13.7 6.1 (−4.9) 3.6 (−16.8) 2.5 (−26.3) 5.5 (−3.5) 6.0 (−0.7) 4.5 (−1.1)
360 9.7 5.3 (−7.5) 3.4 (−16.0) 2.5 (−25.2) 5.0 (−3.3) 4.2 (−0.7) 4.3 (−0.5)
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Test were performed comparing SNR values and intensity bias with the
proposed wavelet-based filtering (3Dwf). In our case, the parametric
values of this function have been estimated using the median absolute
deviation of the image gradient as noise estimator in each iteration. The
number of iterations has been limited to avoid oversmothing, imposing
10 iterations for regular objects dataset and 15 for irregular objects
dataset.

2.3. PET-AS procedures

Many segmentation procedures have been classified in the literature
[5,6]. In this study, five have been selected according to the current
vendor implementations [6]. These include the class of threshold-based
algorithms (thresholding). Algorithms based on edge recognition are
included (gradient) and those based on region of interest homogeneity
(region-based). These algorithms, frequently used in clinical practice,
are very sensitive to image noise, however. Finally, a method based on
the statistical distribution of pixel intensity to partition the image has
also been included (clustering).

2.3.1. Fixed threshold segmentation: FTS
The simplest segmentation scheme is based on the application of a

fixed threshold by selecting the pixels above it. A threshold of 50% was
used and applied to the maximum values average (to avoid spurious
spikes 8 pixels were selected when it was possible) within a ROI, which
involved the signal to be segmented.

The choice of threshold is arbitrary. In our case, a 50% threshold of
the maximum was selected, following Hatt et al. [21], which indicates
the robustness of this selection compared with a 42% threshold of the
maximum (commonly used).

2.3.2. Adaptive threshold segmentation: ATS
Use of a single threshold value has limitations due to the large

number of influencers. An ample bibliography [22,23] attempts to solve
the problem of choosing a threshold adapted to various factors, such as
acquisition conditions, equipment, S/B ratio and volume. In our case,
the objective is not to evaluate the PET-AS algorithm, but to determine
the influence denoising has on it; thus, the applied ATS is one that
minimises the difference between the Ground Truth and the segmented
volumes. This ATS only makes sense as a concept, without any practical

intent.

2.3.3. Watershed gradient segmentation: WGS
The watershed transform was applied to the gradient image in a

similar manner as that used by Drever et al. [24]. The problem of
oversegmentation associated with this technique was solved by mor-
phological operations [25]. The choice of mark size (crucial question)
was performed by a previous thresholding step using Otsu's method
[26] to determine the number of N points above the threshold. We
found from experimental tests that the adequate radius of the marks
(disks) is N/4 pixels for 256×256 matrix size and N/2 pixels for
128× 128 matrix size.

2.3.4. Adaptive region growing: ARG
An algorithm for seeded region-growing based on similarity of in-

tensities proposed by Li et al. [27] was implemented. Via this algo-
rithm, each pixel value is compared to the current cluster intensity
average and is incorporated if it is within threshold T. To make it
adaptative, the threshold T should vary from 0% to 100% in increments
of 1%. The algorithm is stopped when a variation of volumes exceeds a
certain magnitude. This algorithm is very sensitive to the initial seed
value. This produces an “all-or-none” effect, in which all pixels (in-
cluding the background) or none are selected. Constraints were applied
based on a rough ROI, manually contoured to limit the tumour
boundary and to choose the preliminary threshold.

2.3.5. Affinity propagation clustering: AP
We used the affinity propagation (AP) algorithm proposed by Foster

et al. [28,29]. This method uses a similarity metric between the data
points along the grey-level histogram of the image, then AP to cluster
the intensities based on this metric.

The problem of labelling was solved using an optimum value for
each filter used. It was considered as label optimum value the obtained
for the sphere with diameter of 22mm (intermediate size) in the
medium contrast acquisitions for the IEC phantom. It was also neces-
sary to use a rough manually contoured ROI to obtain the correct la-
belled cluster.

Fig. 1. Processing Comparison. Representative ATS
head and neck lesion. In red, the simulated tumour
(Ground Truth); in green, the result of ATS. Top: (A)
3Dwf; (B) 2Dwf average: the 3D estimate was made
by averaging the 2D processing result of each pro-
jection. Bottom: (C), (D) and (E) are the result of
processing each projection in 2D.
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2.4. Segmentation evaluation

The coincidence of shape on segmented volume with the Ground
Truth was evaluated. The Dice metric (Dice similarity coefficient, DSC)
and classification error (CE) were used. These are defined as [6]:

=
∩

+

DSC A B
A B
2| |
| | | | (5)

=
+CE FP FN
A| | (6)

where A is the Ground Truth (reference volume), B is the measured
volume to be evaluated (segmented volume), FP (false positive) is the
volume included erroneously in segmentation (does not belong to the
Ground Truth) and FN (false negative) is the volume not included in
segmentation.

DSC provides a measure of overlap between the two volumes. It is
normalised so that with a perfect coincidence, DSC=1 is obtained. If
only half of the evaluated volume coincides with the reference, then the
DSC=0.5. Several authors [30,31] consider that values of DSC>0.7
represent a good result for a PET-AS. CE represents the segmentation
error, both for excess or lack. Mean CE and associated standard de-
viation (SD) can be used to estimate the accuracy and precision of the
segmentation algorithm associated with a denoising procedure.

A blurring measure was introduced using the method described by
Marziliano et al. [32], which performed an objective blur estimation by
computing the width average of all horizontal and vertical edges in the
image. In short, the algorithm measures the edge width by iterating in
each row (and column) and looking for the edge ends. The found width
is accumulated in a total edge width counter and then divided between
the number of borders found. The method requires an edge detector
(usually Sobel), but it is very sensitive to image noise. In our case, the
reference mask to locate and quantify only the edges of interest was
used, thus preventing the possibility of finding spurious edges due to
noise. This metric is a rough width edge estimate and its value should
not be taken in isolation. This index was applied in the same manner to
the various filters in the study and it will be used in the Discussion to
establish a relationship between their values and the considered filters.
It also has the advantage of being very simple to apply.

3. Results

3.1. Filters in phantom series

Table 1 summarises the filter effect for both phantom studies. The
noise level (evaluated as standard deviation/average×100) obtained

from various ROIs in the background region is indicated in both the
input series and after filter application. We include in parentheses an
estimate of the intensity bias. The intensity differences when applying
various filters depends on the object size. We used a global score
evaluated by means of ROI for each object and determined the mean
value difference for each of them with respect to the nonfiltered image.
The final index that is shown is the average response of all the objects.
To avoid bias in the evaluation, the ROIs were identical for each data
series.

As shown, the g3f filter barely reduces the noise level in spherical
object series (IEC-phantom). This is due to pixel size of these series
(3.906mm), reconstructed in a 128×128 matrix. This does not occur
in the case of irregular object series (simulated phantom), with a pixel
size inferior to the FWHM of this filter. As the Gaussian kernel size
increases, the noise level progressively decreases, as shown. Normally
the filtering process involves a loss of signal intensity. As expected,
Gaussian filters decrease the noise level at the expense of a strong loss
of signal intensity, with this loss increasing with the kernel width used.
The bf, adf and 3Dwf are designed to minimise this intensity loss. These
filters show a reduction in the noise level comparable to g5f or g7f, with
a much lower signal intensity reduction (from table, the intensity bias
and noise decreased ratio is greater than 1 for gaussian filters and below
1 for edge preserving filters). In particular, this table shows the good
parameter adjustment implemented in bf and adf.

In order to better characterise the proposed filter, refer to Table 2,
which shows the blurring measure of each dataset obtained by the
Marziliano method [32]. To consider only the effect due to the filter,
the results show the average edge width difference with respect to the
nonfiltered images.

To measure the filter-induced blurring, the width of the nonfiltered
images has been subtracted in each case due to the high variability in
the average edge width of nonfiltered images. Tests (not shown here)
with various stopping criteria for the OSEM algorithm show that the
reason for these differences is probably due to the different convergence
rates of the OSEM method.

The results in Table 2 are consistent with those in Table 1. In the
case of the g3f, g5f and g7f filters, the blurring increase matches the loss
of signal intensity. As shown, the blurring degree induced by the non-
linear filters, bf, adf and 3Dwf, can be quantified and is comparable to
g3f. As shown in both tables, the proposed filter 3Dwf shows a more
appreciable compromise between noise reduction, maintaining signal
intensity and preserving edge.

Fig. 2 shows, in a representative manner, the behaviour of the ARG
and WGS algorithms implemented for the series, with irregular objects
under various noise reduction procedures. As indicated in the caption,

Table 2
Blur measure: The second column shows the average edge width of nonfiltered images (nf). The increase of the width with respect to nf is indicated for each filter.
Spherical objects are located at the top and irregular series at the bottom.

Spherical objects Increase of the width with respect to nf (in pixels)

S/B Width of nf image (in pixels) g3f g5f g7f bf adf 3Dwf

∼20:1 4.4 0.0 1.1 2.3 0.5 1.1 0.1
∼10:1 4.6 0.0 0.5 1.5 1.3 1.3 0.4
∼5:1 4.0 0.1 1.4 2.6 1.3 1.6 1.1
∼5:1HR 4.6 0.6 1.5 3.6 1.0 1.6 0.9

Mean 0.2 1.1 2.5 1.0 1.4 0.6

Irregular objects Increase of the width with respect to nf (in pixels)

Time [s] Width of nf image (in pixels) g3f g5f g7f bf adf 3Dwf

30 4.1 0.8 2.4 3.8 1.5 1.6 2.1
60 4.7 2.0 2.4 3.0 2.7 3.3 2.3
180 4.9 1.6 2.9 3.8 1.8 2.4 1.4
360 5.3 1.1 2.4 3.7 2.6 3.3 1.5

Mean 1.4 2.5 3.6 2.1 2.6 1.8
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three different noise levels have been considered. The values of the
metrics used in each slice are also indicated. As presented, filtration
using 3Dwf is shown to be more polyvalent, obtaining better perfor-
mance in all cases. The positive result obtained by the filter g3f in the
“S” object can be observed. The morphological operations implemented
in WGS, prior to clustering, perform a process of filling objects in the
foreground and noise reduction in the background. This means that
low-filter methods such as g3f, which produce less smoothing and
preserve edges better, benefit from this segmentation procedure.

Table 3 shows the mean values of the DSC and CE metrics against

each filter and the segmentation method on the phantom series with
spherical inserts including only the reconstructions of 128× 128 ma-
trix size. Table 4 shows these mean values for the irregular inserts
series.

As indicated in the Table 3 caption, the WGS and ARG algorithms
are unable to segment smaller spheres (10- and 13-mm diameters) due
to the resolution (128× 128 with 3.906mm/pixel) and implementa-
tion; thus, they were excluded from the evaluation (this exclusion was
made for all filtering schemes).

It is worthwhile to address the effect of small objects on these two

Fig. 2. Representative segmentation result of irregular object. First Row: Representative slice of the lesions (evaluation mask), outlined in red below. Second row:
ARG segmentation “tie” object. (DSC, CE) measures in this slice are g3f (0.88, 0.26), g5f (0.89, 0.23), g7f (0.79, 0.54), bf (0.86, 0.33), adf (0.94,0.13), 3Dwf
(0.94,0.13). Noise level before denoising= 9.7% (low noise). Third row: AP segmentation “croissant” object. (DSC, CE) measures in this slice are g3f (0.87, 0.23), g5f
(0.84, 0.38), g7f (0.86, 0.31), bf (0.90, 0.22), adf (0.90, 0.19), 3Dwf (0.92, 0.18). Noise level before denoising=19.4% (medium noise). Fourth row: WGS seg-
mentation “S” object. (DSC, CE) measures in this slice are g3f (0.83, 0.33), g5f (0.78, 0.41), g7f (0.77, 0.42), bf (0.80, 0.45), adf (0.80, 0.46), 3Dwf (0.83, 0.33). Noise
level before denoising=24.9% (high noise).

Table 3
Mean and standard deviation (in parentheses) of DSC and CE metrics for spherical inserts (*with this resolution the WGS and ARG implementation are not able to
segment the smaller spheres).

Filter DSC CE

FTS ATS WGS* ARG* AP FTS ATS WGS* ARG* AP

g3f 0.81
(0.10)

0.88
(0.05)

0.84
(0.07)

0.70
(0.17)

0.83
(0.18)

0.33
(0.16)

0.24
(0.10)

0.32
(0.20)

0.57
(0.27)

0.27
(0.22)

g5f 0.85
(0.07)

0.88
(0.06)

0.83
(0.07)

0.71
(0.16)

0.84
(0.17)

0.30
(0.15)

0.25
(0.12)

0.36
(0.22)

0.69
(0.44)

0.25
(0.22)

g7f 0.82
(0.13)

0.87
(0.07)

0.73
(0.17)

0.69
(0.15)

0.80
(0.20)

0.48
(0.59)

0.25
(0.14)

0.42
(0.22)

0.77
(0.55)

0.30
(0.28)

bf 0.83
(0.09)

0.88
(0.05)

0.84
(0.07)

0.70
(0.16)

0.86
(0.17)

0.31
(0.15)

0.23
(0.14)

0.32
(0.19)

0.66
(0.39)

0.28
(0.30)

adf 0.83
(0.08)

0.88
(0.06)

0.79
(0.14)

0.69
(0.19)

0.84
(0.16)

0.31
(0.17)

0.24
(0.11)

0.37
(0.22)

0.60
(0.25)

0.32
(0.41)

3Dwf 0.86
(0.06)

0.88
(0.06)

0.85
(0.06)

0.74
(0.12)

0.87
(0.11)

0.28
(0.14)

0.24
(0.10)

0.31
(0.17)

0.55
(0.27)

0.26
(0.20)
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schemes of segmentation. Fig. 3 compares the effect of the object size
for the WGS and ARG algorithms on low contrast acquisition with
matrix size of 256× 256 and 128×128 by means of DSC values. To
provide better visualisation of data, the results are grouped in three
bins: large spheres (37–28mm), medium-sized spheres (22–17mm) and
small spheres (13–10mm); the error bars represent the range within
each bin. Using the 128×128 matrix reconstruction (right) there are
no large differences between the various segmentation schemes; how-
ever, the algorithms are unable to segment the small spheres. In the
case of the 256×256 matrix reconstructions (left), the segmentation of
these spheres is performed, showing an evident improvement using the
3Dwf in both algorithms.

FTS filtering is very dependent on threshold choice. Thus, the result
of the first column in Table 3 should be taken simply as a sample of the
great influence of the filtering procedure in the segmentation processes.
The ATS algorithm provides the optimal solution: in spherical objects,
all the filters give the same result; in irregular objects, slight differences
can be seen supporting the proposed procedure (3Dwf). In general, as
shown in both tables, denoising procedures designed to preserve edges
provide better results than those that do not. The g3f can be partially
included in this statement with certain segmentation methods (as pre-
viously stated with WGS).

The spherical inserts dataset describes the filter segmentation var-
iation at different S/B ratios. Fig. 4 shows DSC and CE mean values
obtained, averaging all segmentation methods for each filter in high,
medium and low contrasts. As can be observed, for all filters, dimin-
ishing the contrast results in a worsening of the segmentation process
from high contrast to medium or low contrast, to assess this aspect it is

important to observe the strong increase in SD reflected in the error
bars for all filters. The irregular objects dataset describes the segmen-
tation differences at various input noise levels. Fig. 5 shows the DSC
and CE mean values obtained, averaging all segmentation methods for
each filter. Gaussian filters are affected significantly by noise level
input. Of these, g3f exhibits the best behaviour in the distinct noise
scenarios. The bf shows less dependence on noise, although in high-
level noise conditions having DSC values below 0.8. The adf shows
greater differences when varying the noise conditions. The proposed
3Dwf is stable in noise conditions with DSC values higher than 0.8 and
CE in a range of 0.35–0.23, much lower than the other filters. This
stability is due to the noise estimation included in the filtering algo-
rithm; thus, it is more adaptive to noise conditions.

The global error that can be expected with each segmentation
method is shown in Table 5. Within Gaussian filters, smaller CE values
are found with low filtering, in which edges remain with minor
changes, despite the images having more noise (e.g. g3f). Nonlinear
filters have a better performance with a lower error and SD. The 3Dwf
produces a noticeable improvement in segmentation task relative to the
other denoising procedures. In case of irregular inserts, mean error
below 30% with SD of 12% demonstrates how the segmentation
methods considered are reinforced by this denoising procedure. Also,
the global CE values obtained by 3D estimation according to previous
work [12] have been included. As expected, 3Dwt shows a slight im-
provement when considering irregular inserts due to the greater di-
rectionality of decomposition base used; this was shown in Fig. 1.

Table 4
Mean and standard deviation (in parentheses) of DSC and CE metrics for irregular inserts (IEC-phantom).

Filter DSC CE

FTS ATS WGS ARG AP FTS ATS WGS ARG AP

g3f 0.79
(0.07)

0.85
(0.05)

0.81
(0.06)

0.83
(0.05)

0.74
(0.14)

0.51
(0.23)

0.31
(0.10)

0.37
(0.15)

0.31
(0.11)

0.69
(0.69)

g5f 0.67
(0.11)

0.80
(0.07)

0.77
(0.06)

0.81
(0.06)

0.76
(0.08)

1.07
(0.49)

0.40
(0.13)

0.44
(0.15)

0.39
(0.13)

0.52
(0.12)

g7f 0.49
(0.17)

0.78
(0.07)

0.75
(0.06)

0.79
(0.06)

0.76
(0.07)

2.59
(1.64)

0.44
(0.14)

0.47
(0.14)

0.42
(0.12)

0.53
(0.12)

bf 0.80
(0.10)

0.87
(0.06)

0.82
(0.06)

0.85
(0.08)

0.84
(0.07)

0.41
(0.16)

0.27
(0.12)

0.35
(0.13)

0.30
(0.15)

0.37
(0.22)

adf 0.79
(0.11)

0.87
(0.08)

0.80
(0.09)

0.84
(0.08)

0.81
(0.12)

0.40
(0.17)

0.29
(0.17)

0.45
(0.35)

0.32
(0.16)

0.38
(0.19)

3Dwf 0.85
(0.05)

0.88
(0.05)

0.84
(0.05)

0.87
(0.07)

0.86
(0.05)

0.33
(0.12)

0.24
(0.11)

0.31
(0.09)

0.27
(0.13)

0.29
(0.11)

Fig. 3. Effect of the object size for the WGS (top) and ARG (bottom) algorithms on acquisition∼ 5:1 HR (left) and∼ 5:1 (right). The DSC values are grouped in three
bins and the error bars represent the range within each bin.
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3.2. Filters in clinical series

Fig. 6 shows the result of manual contouring performed by the ra-
diation oncologist involving various filters in a mediastinum lesion; and
Table 6 shows the DSC and CE mean values for the six clinical cases
considered: three head and neck and three lung and mediastinum. It is
not possible to establish a statistical correlation due to the evaluation of
only a few cases; however, the experience of this test indicates that use
of filters with edge preservation properties leads to an improvement in

manual segmentation. A possible explanation is obtained from Fig. 6:
the excessive presence of noise in g3f and the over-smoothing in g7f
produces a worsening in manual contouring. In this example adf shows
poor performance, however in global good results are obtained with it.

4. Discussion

We have presented segmentation properties of a nonlinear wavelet-
based filter (3Dwf). This version is improved when compared with

Fig. 4. Effect of contrast variation (S/B ratio). DSC and CE values averaging all segmentations on spherical inserts (IEC-phantom). Error bars represent one standard
deviation from the mean.

Fig. 5. Effect of noise level on input. DSC and CE values averaging all segmentations on irregular objects (simulated phantom). Error bars represent one standard
deviation from the mean.
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previous studies [12], by applying 3D context implicitly: from the 3D-
ACF and using the DTCWT described by Selesnick [17] as representa-
tion in the 3D-wavelet domain.

Another minor change refers to not including the VST step. In this
study, we have not found notable differences with and without VST;
and it is remained as an optional issue. In addition, the use of VST is not
without controversy. Using VST is subject to parameters that if they are
poorly determinate leading to inaccurate results with losing clinical
information. We propose as future work the adequate determination of
the parameters of VST in PET, and the need to include this step in
denoising schemes under the wavelet transform.

To show the proposed filter properties, a comparison was performed
with various widely used filtering methods and in various segmentation
frameworks. All the filters were characterised, showing the input and
output SNR and bias in the intensity produced Table 1. A blurring
metric based on the measurement of the average image edge width was
introduced, using a simple method [32] Table 2. This metric can be
useful for adjusting parameters in nonlinear filters and can serve as a
reference when comparing results between studies.

Within the filters used for comparison purposes, bf and adf have
been included. These filters, such as that we proposed, share border
preservation features. However, they strongly depend on parameter
adjustment by the user [17] because the same adjustment might not be
valid from one case to another. The solution that we present is unique,
without dependent parameters. It is based on the autocorrelation
function determination, obtained from the power spectral density,
which describes how the signal energy is distributed in the frequency
domain. It is easily obtained in the PET scanner for the reconstruction
used, given that its acquisition forms part of the periodic controls to
which they are subject.

The proposed noise reduction method improves the results of

segmentation in all considered cases. It is necessary to point out that
although the differences are not yet statistically significant in the sce-
narios described, a clear positive influence is shown from the 3Dwf
when compared with other evaluated filters in the considered seg-
mentation procedures. From the results on phantoms, by averaging all
the objects and series (both irregular and regular), the DSC value for
3Dwf is 0.85 (0.98–0.50) and in order from the highest to the lowest
value, 0.83 (0.99–0.44), 0.82 (0.99–0.19), 0.81 (1.0–0.39), 0.79
(0.99–0.43) and 0.76 (0.99–0.00) for the bf, adf, g3f, g5f and g7f, re-
spectively.

3Dwf was also shown to be more stable under conditions of low
contrast and high noise, showing lower spread of segmentation results.
In contrast assessment, the proposed filter has a mean CE and SE of
0.29 ± 0.12, compared with the values 0.34 ± 0.16 and 0.37 ± 0.22
of the bf and adf respectively (leading to a decrease in error rate of
approximately 15%); and 0.44 ± 0.36, 0.56 ± 0.035 for Gaussian
filters g3f and g5f respectively (decreasing the error rate more than
35%).

Recently, McGurk et al. [11] performed an interesting evaluation of
the influence of filtering on segmentation. They obtained a fit DSC
model for a series of explanatory variables (scan duration, contrast,
filter, and segmentation method). As far as we know, no other studies
make a similar assessment. However, some of the results from McGurk’s
study do not match ours. In particular, the filter with the best tradeoff
relationship between image smoothing and edge preservation is g5f. In
this reference bf shows poor results, being necessary a Gaussian pre-
filtering to achieve better results. However, we found that better results
are obtained by filters designed to preserve edges such as bf, adf and
3Dwf. One of the differences with the study by McGurk et al. [11] is the
parameter adjustment for the bf. They were performed fitted to the g5f;
and in our case fitted to the 3Dwf, thus, results might not be compar-
able.

We have presented an interesting exercise to evaluate the difficul-
ties of the radiation oncologist when facing contouring of volumes in
clinical series. With the few cases evaluated, it was not possible to es-
tablish a statistical correlation. The object of this study was not to cover
a large number of situations and the complexity of the clinical en-
vironment. However, the test performed appears to indicate that the
postreconstruction filter significantly affects the appearance of the final
image. The presence of a noisy environment and more undefined edges
can cause operator “discomfort,” which could affect the final result of
the contouring. With these six cases, 36 volumes have been generated
in two pathologies. From this experiment, the best results, i.e. the
contoured volume, which was closer to the simulated volume, were
achieved by using the filters having good edge preservation properties:
the bf and 3Dwf. A more in-depth investigation, based on the operator's
perception, will be the subject of a future study.

Finally, with regard to denoising role in segmentation, advanced
methods of segmentation could make previous steps of noise reduction
unnecessary (even using non-filtered images): Hatt et al. [21] it shows a
segmentation method (FLAB) that take into account the noise proper-
ties in its statistical modeling. In our study, it has been observed when
considering the good properties of g3f combined with WGS. Specifi-
cally, the benefit obtained is through the morphological operations to

Table 5
Mean classification error, associated standard deviation and rank associated
with each filter, averaging all the segmentations. Regular and irregular object
contribution is also indicated.

Filter g3f g5f g7f bf adf 3Dwf

Mean CE
All objects

0.39 0.46 0.66 0.34 0.37 0.31

Standard dev
All objects

0.30 0.34 0.88 0.23 0.25 0.17

Range [max,
min]

[3.15,
0.05]

[2.08,
0.02]

[4.93,
0.03]

[1.71,
0.02]

[1.80,
0.02]

[0.94,
0.05]

Mean CE
Regular

0.34 0.36 0.44 0.35 0.36 0.32

Standard dev
Regular

0.22 0.29 0.44 0.28 0.28 0.21

Range [max,
min]

[0.95,
0.05]

[2.00,
00.2]

[2.57,
0.03]

[1.71,
0.02]

[1.80,
0.02]

[0.94,
0.05]

Mean CE
Irregular

0.44 0.56 0.89 0.34 0.37 0.29

Standard dev
Irregular

0.36 0.35 1.12 0.16 0.22 0.12

Range [max,
min]

[0.35,
0.18]

[2.08,
0.22]

[4.93,
0.25]

[0.92,
0.14]

[1.38,
0.13]

[0.60,
0.13]

Fig. 6. Representative manual segmentation result of mediastinal lesion. In red, the simulated tumour, in green, the result of manual contouring. (DSC, CE) measures
in this slice are g3f (0.86, 0.28), g5f (0.86, 0.31), g7f (0.87, 0.30), bf (0.84, 0.38), adf (0.67, 0.47) and 3Dwf (0.90, 0.20).
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avoid over-segmentation. Perhaps this is the reason for the lack of
discussion in the compilations [5,6], which we have discussed in the
introduction. However, we thought that many others PET-AS would
show an improvement, with better noise processing. In this study we
have included the most commonly segmentation schemes in clinical
practice, and some results can be derived from our work and although
some of them might seem obvious, they are important and they are not
often considered in clinical practice.

5. Conclusion

We have proposed an improvement of a nonlinear wavelet-based
filter that evaluates the 3D context for enhancing the filtering effect and
edge preservation. The proposed filter has been characterised in detail
and the effect on segmentation tasks has been presented. The inclusion
of this type of filter in segmentation procedures represents a promising
tool for reinforcing its accuracy and precision.
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