Presentación    
STRUCTURE, NEUROCHEMISTRY
AND PLASTICITY OF NEURAL
CIRCUITS OF THE CEREBRAL
CORTEX AND THALAMUS
Composition
Name
Position
Institution
Francisco Clascá Cabré
Catedrático. Facultad de de Medicina
Universidad Autónoma de Madrid
Juan Álvarez-Linera Prado
Facultativo Especialista de Área en Radiodiagnóstico
Hospital Universitario La Paz
Carlos Avendaño Trueba
Catedrático. Facultad de Medicina
Universidad Autónoma de Madrid
Marina Cabrizo Alonso
Técnico de Laboratorio
Universidad Autónoma de Madrid
Guadalupe Camarero Calderón
Investigadora Postdoctoral
IIB "Alberto Sols"
Carmen Cavada Martínez
Catedrática. Facultad de Medicina
Universidad Autónoma de Madrid
Miguel Ángel García Cabezas
Profesor Asociado. Especialista en Anatomía Patológica
Universidad Autónoma de Madrid
María García-Amado Sancho
Investigadora Predoctoral
Universidad Autónoma de Madrid
María José García-Miguel Piedras
Ayudante de Universidad. Facultad de Medicina
Universidad Autónoma de Madrid
Agnieszka Krzyanowska
Investigadora Predoctoral
Universidad Autónoma de Madrid
Raquel Márquez López
Técnico de Laboratorio
Universidad Autónoma de Madrid
B. Yasmina Martín Martínez
Investigadora Predoctoral
Universidad Autónoma de Madrid
Marta Miró Murillo
Técnico de Laboratorio
Universidad Autónoma de Madrid
César Porrero Calzado
Investigador Predoctoral
Universidad Autónoma de Madrid
Lucía Prensa Sepúlveda
Profesora Titular. Facultad de Medicina
Universidad Autónoma de Madrid
Begoña Rodríguez Menéndez
Técnico de Laboratorio
Universidad Autónoma de Madrid
Pablo Rubio Garrido
Profesor Contratado. Facultad de Medicina
Universidad San Pablo-CEU
Rosa Sánchez Lozano
Técnico de Laboratorio
Universidad Autónoma de Madrid
Strategic Objective
Our project is aimed towards identifying and quantifying the cellular microcircuits, neurochemistry and plasticity of neural networks that connect the cerebral cortex and the thalamus, as well as a number of systems afferent to the thalamus and its modification through stimulation or injury.
These complex networks are the biological substrate of cognitive, perceptual and voluntary motor control capabilities. Although our objective is to advance understanding of the human brain, the implementation of the  experimental techniques with the greatest problem-solving capacity must, in large part, be conducted in animal, primate and rodent models.
The information that our studies provide is necessary to understanding the cellular basis of higher brain functions as the foundation for understanding its normal and pathological function. 
Research Lines
• Thalamocortical circuits: cellular and synaptic development and diversity in animal models.
• Structure of neural systems and models of human neurological diseases (Parkinson’s and Alzheimer’s) in the brains of primates and rodents.
• Plasticity of the somatosensory system.
• Inhibitory mechanisms involved in neuropathic pain in animal models.